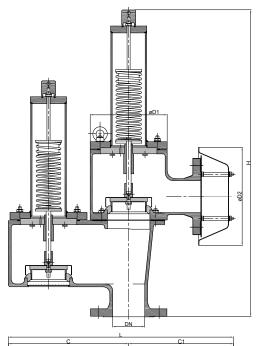
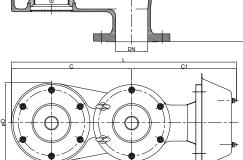
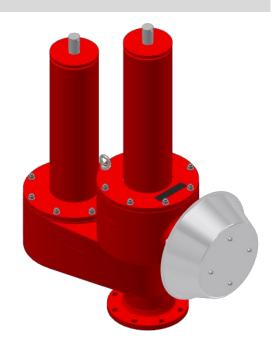

### Type sheet


Pressure and vacuum relief valve KITO® VD/oG-PA-... VDE





### **Application**

As end-of-line armature, for venting apertures on tank installations. Used mainly as venting and breather device for fixed roof tanks. Used to prevent inadmissible pressure and vacuum and to minimize unwelcome gas losses or inadmissible emissions respectively. The housing is mounted perpendicularly on a tank roof.

### Dimensions (mm) and settings (mbar)







| DN        |      | С   | C1  | D   | D1  | D2  | н    |      | ka | setting |          |
|-----------|------|-----|-----|-----|-----|-----|------|------|----|---------|----------|
| DIN       | ASME | C   | O1  | Ь   | יט  | DZ  | п    |      | kg | vacuum  | pressure |
| 50 PN 16  | 2"   | 255 | 230 | 165 | 165 | 245 | 604  | 485  |    |         |          |
| 80 PN 16  | 3"   | 300 | 320 | 200 | 192 | 286 | 766  | 620  |    |         |          |
| 100 PN 16 | 4"   | 400 | 340 | 250 | 240 | 331 | 911  | 740  |    |         |          |
| 150 PN 16 | 6"   | 555 | 405 | 350 | 350 | 405 | 1173 | 960  |    | >60-415 | >60-415  |
| 200 PN 10 | 8"   | 625 | 455 | 400 | 390 | 465 | 1526 | 1080 |    |         |          |
| 250 PN 10 | 10"  | 705 | 460 | 460 | 460 | 550 | 1630 | 1165 |    |         |          |
| 300 PN 10 | 12"  | 705 | 460 | 460 | 460 | 600 | 1630 | 1165 |    |         |          |

Indicated weights are understood without weight load and refer to the standard design

info@kito.de

### Example for order

KITO® VD/oG-PA-50 VDE

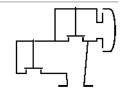
(design DN 50 with flange connection DN 50 PN 16)

## Without EC certificate and ( 6-marking

page 1 of 2

KITO Armaturen GmbH ) +49 (0) 531 23000-0 Grotrian-Steinweg-Str. 1c +49 (0) 531 23000-10 D-38112 Braunschweig www.kito.de VAT Reg.No DE812887561

 $\bowtie$ 


E 21.5 N Date: 06-2023 Abt. Doku KITO Created: Design subject to change



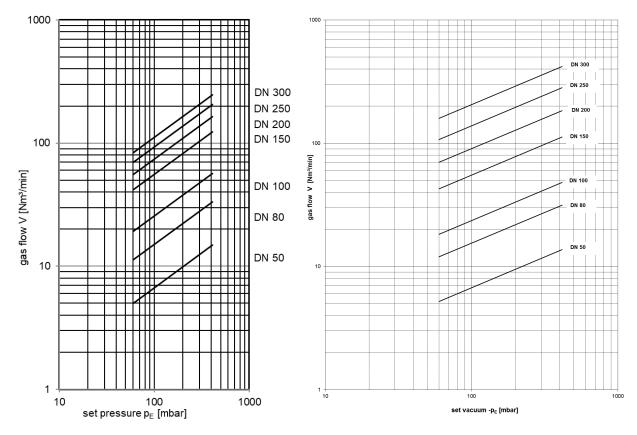
### Type sheet

# Pressure and vacuum relief valve

### KITO® VD/oG-PA-... VDE



### Design


|                              | standard                                     | optionally                             |  |  |  |
|------------------------------|----------------------------------------------|----------------------------------------|--|--|--|
| housing upper part (PN 1)    | cast steel mat. no. 1.0619                   | stainless cast steel mat. no. 1.4408   |  |  |  |
| housing lower part           | cast steel mat. no. 1.0619                   | stainless cast steel mat. no. 1.4408   |  |  |  |
| cover                        | steel                                        | stainless steel mat. no. 1.4301/1.4571 |  |  |  |
| gasket                       | PTFE                                         |                                        |  |  |  |
| weather hood                 | stainless steel                              |                                        |  |  |  |
| protective screen            | stainless steel mat. no. 1.4301 (DN 200-300) |                                        |  |  |  |
| design valve pallet          | spring loaded                                |                                        |  |  |  |
| valve seat                   | stainless steel mat. no. 1.4571              |                                        |  |  |  |
| valve pallet / valve spindle | stainless steel mat. no. 1.4571              |                                        |  |  |  |
| valve sealing                | metal sealing                                |                                        |  |  |  |
| spring loaded parts          | stainless steel mat. no. 1.4571              |                                        |  |  |  |
| compression spring           | stainless steel                              |                                        |  |  |  |
| flange connection            | EN 1092-1 type B1                            | ASME B16.5 Class 150 RF                |  |  |  |

#### Performance curves

Flow capacity V based on air of a density  $\rho$  = 1.29 kg/m³ at T = 273 K and atmospheric pressure p = 1.013 mbar. For other gases the flow can be approximately calculated by

$$\overset{\cdot}{V}_{20\%} = \overset{\cdot}{V}_b \cdot \sqrt{\frac{\rho_b}{1.29}} \qquad \text{or} \qquad \overset{\cdot}{V}_b = \overset{\cdot}{V}_{20\%} \cdot \sqrt{\frac{1.29}{\rho_b}}$$

The indicated flow rates will be reached by an accumulation of 20 % above valve's setting. If the allowable overpressure is less than 20%, please consult the factory for the corrected volume flow.



page 2 of 2

Abt. Doku KITO

)

**E 21.5 N**Date: 06-2023

Created:

Design subject to change