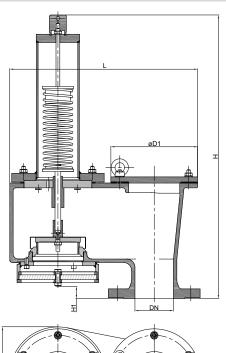
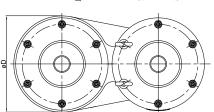
Type sheet


Deflagration proof vacuum relief valve **KITO**® **VS/KG-IIB3-... V**



Application

As explosions proof end-of-line armatures, for venting apertures on tank installations for ventilation and to prevent inadmissible vacuum. Usually mounted on top of a tank. Approved for flammable liquids of explosion group IIB3 with a maximum experimental safe gap (MESG) ≥ 0.65 mm and an maximum operating temperature of 60 °C.

Dimensions (mm) and settings (mbar)

DN		_	D4	l	LIA .	l .	l cotting	lea.
DIN	ASME	D	D1	н	H1	-	setting	kg
50 PN 16	2"	165	140	462	3	325	>60-415	
80 PN 16	3"	200	180	589		390		
100 PN 16	4"	250	210	719		505		
150 PN 16	6"	350	315	956		713		
200 PN 10	8"	420	365	1140		808		
250 PN 10	10"	460	440	1190	12	925		
300 PN 10	12"	460	440	1190		925		

Indicated weights are understood without weight load and refer to the standard design

info@kito.de

Example for order

KITO® VS/KG-IIB3-50 V

VAT Reg.No DE812887561

(design with flange connection DN 50 PN 16)

Type examination certificate to EN ISO 16852 and < €-marking in accordance to ATEX-Directive 2014/34/EU

page 1 of 2

 KITO Armaturen GmbH
 J
 +49 (0) 531 23000-0

 Grotrian-Steinweg-Str. 1c
 ∃
 +49 (0) 531 23000-10

 D-38112 Braunschweig
 □
 www.kito.de

 \bowtie

D 14.1 NDate: 05-2023

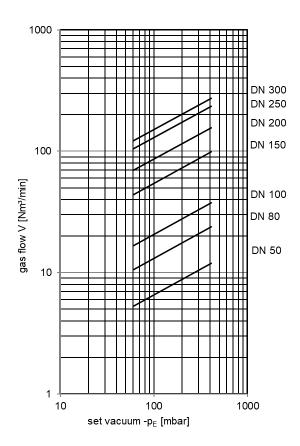
Created: Abt. Doku KITO

Design subject to change

Type sheet

Deflagration proof vacuum relief valve **KITO**® **VS/KG-IIB3-... V**

Design


	standard	optionally		
housing	cast steel mat. no. 1.0619	stainless cast steel mat. no. 1.4408		
cover	steel	stainless steel mat. no. 1.4301		
gasket	PTFE			
design valve pallet	spring loaded			
valve seat	stainless steel mat. no. 1.4571			
valve pallet, valve spindle	stainless steel mat. no. 1.4571			
valve sealing	metal sealing			
spring loaded parts	stainless steel mat. no. 1.4571			
compression spring	stainless steel			
KITO®-flame arrester element	interchangeable			
KITO®-casing / KITO®-grid	stainless steel mat. no. 1.4571 / 1.4310	stainless steel mat. no. 1.4571 / 1.4571		
flange connection	EN 1092-1 type B1	ASME B16.5 Class 150 RF		

Performance curves

The flow capacity V refers to a density of air with ρ = 1.29 kg/m³ at a temperature of 273 K and a pressure of 1.013 mbar. The flow capacity for gases with different densities can be calculated sufficiently accurate by the following approximation equation:

$$\dot{V}_{20\%} = \dot{V}_b \cdot \sqrt{\frac{\rho_b}{1.29}} \qquad or \qquad \dot{V}_b = \dot{V}_{20\%} \cdot \sqrt{\frac{1.29}{\rho_b}}$$

Indicated flow rates will be reached by an accumulation of 20% above valve's setting. If the allowable overpressure is less than 20%, please consult the factory for the corrected volume flow.

)

 \bowtie

D 14.1 N